

STULZ Water-Side Economizer Solutions

with STULZ Dynamic Economizer Cooling Optimized Cap-Ex and Minimized Op-Ex

STULZ Data Center Design Guide Authors: Jason Derrick PE, David Joy Date: January 16, 2014

Table of Contents

ASHRAE Standards and Guidelines relative to Precision Cooling	Pages
ASHRAE TC9.9 - 2011	5 - 6
ASHRAE 90.1 - 2010	7
Comparison of CRAC and CRAH at different conditions	8 - 9

STULZ Water-Side Economizers based on a CRAC with a Free Cooling Coil

Circuits explained	10
Traditional Economizer Cooling	11
Variable Economizer Cooling	12
Evaporative Tower Economizer Solution	13
Comparison of DX Economizer Cooling	14

STULZ Water-Side Economizers based on a CRAH with single or dual circuit

Dual-Source Chilled Water Economizer Cooling	15
STULZ Dynamic Economizer Cooling	16
STULZ Dynamic Economizer Cooling Conditions Chart	17
Comparison of CRAHs with single or dual circuit	18

STULZ Dynamic Economizer Cooling and CyberVisor Controller

STULZ Dynamic Economizer Cooling Components	19 - 21
STULZ CyberVisor Controls	22 - 23
STULZ Dynamic Economizer Cooling Conditions	24
Comparison of Economizer Cooling	25

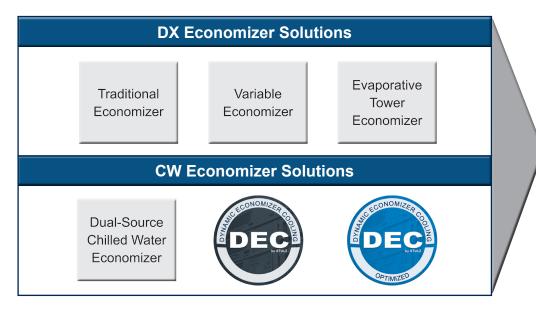
Appendix A

Energy Measurement, Cap-Ex Savings	26	- 2	7

STULZ Water-Side Economizer

with STULZ Dynamic Economizer Cooling

- Optimized Cap-Ex
- Lowest Op-Ex


Technology Leader

STULZ has the broadest line of precision cooling equipment in the industry, from outdoor cooling, to indoor cooling, to retrofit and conditioning. STULZ is leading the way in energy efficient cooling solutions in the data center environment. All STULZ products can be applied to the latest ASHRAE standards and guidelines and used in water-side economizer solutions.

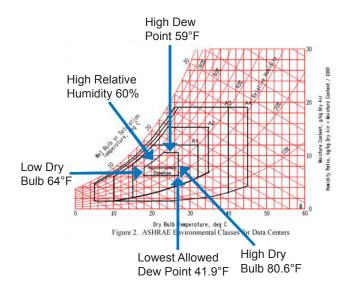
Leading the Way

As a leading manufacturer of precision cooling equipment, STULZ is able to support state-of-the-art energy efficient water-side economizer cooling solutions for data center applications. This design guide will develop why economizers are necessary, illustrate various designs of economizers, and focus on the latest leading-edge solution of STULZ Dynamic Economizer Cooling – including controls, and provides hard data on the tremendous value and cost savings that can be achieved.

STULZ Story of Innovative Economizer Cooling:

STULZ provides industry leading DX and CW-based water-side economizer cooling solutions - detailed in this design guide. The state-of-the-art "STULZ Dynamic Economizer Cooling" solution represents an exciting new approach - with proven results.

Industry Standards

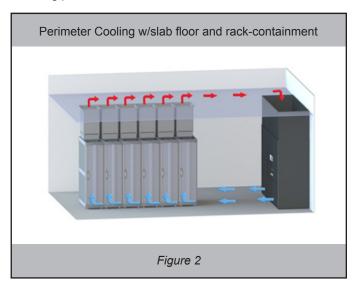

STULZ is an active participant in the ASHRAE TC9.9 and 90.1 standards committees. These standards are very important to the data center industry and are having a large impact on how data centers are being designed and operated.

ASHRAE TC9.9 2011

Thermal Guidelines for Data Processing Environments – Expanded Data Center Classes and Usage Guidance - provides thermal guidelines for data processing environments. The 2011 guideline outlines changes for server inlet temperature and humidity.


These changes to server inlet temperatures, and the allowance for increased delta-T across the server equipment, offer an opportunity to raise the return air temperatures to the cooling equipment. The trend for maximum efficiency in the data center is to isolate the hot return air from the cold supply air preventing air mixing.

What Has Changed	Inlet Air Temperature	Moisture Content
2004 Recommended (old)	68-77.0°F DB	40% RH to 55% RH
2011 Recommended (new)	64-80.6°F DB	41.9°F DP to 60% RH & 59°F DP
2011 Allowable (A1)	59-89.6°F DB	20-80% RH up to 62.1°F DP



The opportunity is to raise the delta-T between the supply air temperature from the cooling equipment to the IT equipment and the return air temperature from the IT equipment to the cooling equipment. This is achieved by implementing hot aisle / cold aisle orientation of racks and optimized with various rack containment strategies.

In hot aisle containment configurations (Figure 1), the raised floor is pressurized with cold air from the precision cooling units, which passes through perforated floor tiles, taken into the servers, heated and exhausted into the contained hot aisle, directed back to the ceiling plenum, then returned to the CRAH units.

An alternate form of containment (Figure 2), is to utilize server racks that have a top ducted chimney connection. A CRAH with front discharge floods the space with cold air, allowing the servers to take cold air in from the front and discharge hot air out to the chimney. This hot air is discharged into a return duct or ceiling plenum and returned to the CRAH unit.

The Value of updates to ASHRAE TC9.9:

Higher return air temperature to the CRAC/CRAH equipment increases cooling efficiencies, as illustrated in the following coil calculation:

Coil Calculations based on different design conditions to achieve different system optimizations:										
CFD-230-C CRAH	Selection 1	Selection 2	Selection 3	Selection 4						
Entering Air DB (°F)	75	95	95	95						
Entering Air WB (°F)	61.1	67.8	67.8	67.8						
Coil Leaving Air DB (°F)	51.0	54.1	54.2	69.9						
Coil Leaving Air WB (°F)	50.5	53.1	53.1	59.2						
Gross Total Capacity (BTU/H)	513,800	755,700	503,400	464,800						
Gross Sensible Capacity (BTU/H)	461,200	755,700	503,400	464,800						
Net Total Capacity (BTU/H)	493,800	735,700	494,500	444,800						
Net Sensible Capacity (BTH/H)	441,200	735,700	494,500	444,800						
Air Flow (ACFM)	18,000	18,000	12,000	18,000						
External Static Pressure (in)	0.30	0.30	0.30	0.30						
Altitude (ft)	0	0	0	0						
Entering Fluid Temperature (°F)	45	45	45	55						
Fluid Type	Water	Water	Water	Water						
Percent Glycol (%)	0	0	0	0						
Fluid Flow (GPM)	105	105	52	43						
Leaving Fluid Temperature (°F)	55	59.7	64.7	77.1						
Coil Fluid Pressure Drop (FT-H ₂ O)	10.2	10.2	2.7	1.9						
Unit Fluid Pressure Drop (FT-H ₂ O)	23.3	23.3	8.6	7.0						
Estimated Unit Power (kW)	5.3	5.3	2.6	5.3						
Selection 1	Baseline	Improved Ne	י גע	Ξ.						

et Sensible Capacity

+66%

teduced Unit Power Consumption

-51%

Selection 1

Shows a baseline standard unit selection for a CRAH, using standard conditions of 75°F entering air, a 52.2°F dew point, entering water of 45°F and leaving water temperature of 55°F.

Selection 2

Shows that an elevated return of 95°F at the same 52.2°F dew point and the same 105 GPM as the baseline selection provides an increase in capacity of **66%**.

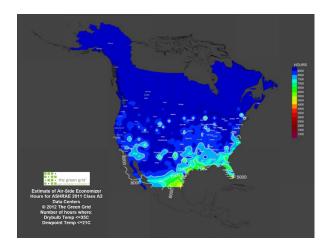
Selection 3

Shows that an elevated return of $95^{\circ}F$ at the same $52.2^{\circ}F$ dew point and reduced airflow from 18,000 CFM to 12,000 CFM provides the same or better net sensible capacity as the baseline selection, and a reduction in unit power consumption of **51%**, and lowers the pump power required.

Selection 4

Shows that an elevated return of 95°F at the same 52.2°F dew point and increasing the entering water temperature from 45°F to 55°F provides the same or better net sensible capacity as the baseline selection, and increases the efficiency of chiller operation by more than **22%**, and lowers the pump power required.

Additional Benefits


By simply raising the air temperature entering the CRAH, tremendous benefits in efficiency can be accomplished. The scenarios shown can be mixed and matched to achieve optimal conditions. Results include more economizer hours, lower PUE, and lower energy costs.

Increased Chiller Efficiency

+22%

ASHRAE 90.1-2010

Energy Efficiency for Buildings - requires the use of air and water economizers in many locations. Since data centers have been identified to consume ~3% of the total energy produced in the U.S., the former process cooling exemption is gone. Water-side economizers must meet 100% of the expected load with cooling towers when operating at or above $40^{\circ}F$ dry bulb / $35^{\circ}F$ wet bulb and with dry coolers when operating at or below $35^{\circ}F$ dry bulb.

The DOE is mandating that all states adopt ASHRAE 90.1-2010, or a more stringent standard, for new data center design and construction by October 2013.

These changes to ASHRAE standards mean that we will have to rethink how data centers are designed.

The Evolution of Measuring Efficiency

The efficiency of comfort air conditioners is typically rated by the Seasonal Energy Efficiency Ratio or SEER, which is the ratio of cooling in British thermal units (BTU) to the energy consumed in watts (W), generally calculated using an outside temperature of 95°F and a return air tempeature of 80°F and 50% RH. Following is a more accurate measurement for precision air conditioning.

The DOE is currently still referring to ASHRAE 127 – 2007 guideline for Sensible Coefficient of Performance (SCOP).

In this paper, STULZ is following ASHRAE 90.1 – 2010 guideline for SCOP.

Many engineers are already adapting the ASHRAE 127 – 2012 guideline for Net Sensible Coefficient of Performance (NSenCOP).

NSenCOP is a ratio calculated by dividing the net sensible cooling capacity in watts by the total power input in watts (excluding re-heat and humidifiers) at any given set of rating conditions. The net sensible cooling capacity is the gross sensible capacity minus the energy dissipated into the cooled space by the fan system. This is the most accurate measurement for the performance of precision cooling equipment.

Economizers are generally described as one of two types:

Direct and Indirect Air-Side Economizer

Direct free cooling is directly introducing outside air into the space to cool the space. The downside of this is the requirement of high levels of filtration and the potential introduction of sulfides into the data center environment. This additional filtration requires the use of larger fan motors to move the required air to directly free cool the space. Another concern is humidity control.

When the air is cool enough to be used for economization, you still have a high percentage of time where the grains of moisture per pound are too low and require additional humidification. The solution is to either limit the outside air based on dew point, which will limit the economizer hours, or add additional humidification into the space, which could potentially offset the energy savings of being in economization mode of cooling.

STULZ offers direct and indirect air-side economizer cooling solutions with CW or DX mechanical cooling and/or direct or indirect adiabatic cooling.

Indirect Water-Side Economizer

Indirect free cooling can be achieved with a water/glycol fluid loop that is pumped through an external heat exchanger of some form, and then providing cooled fluid as a cooling medium to a water/glycol coil that absorbs heat from hot return air. This method is referred to as indirect because the intermediate fluid is contained in a closed system that is isolated from the data center white space. In this white paper, we illustrate how a water-side economizer can be used to achieve indirect free cooling.

There are several water-side economizer options that STULZ is able to support. Each of these designs can be integrated with STULZ indoor cooling (perimeter, row, or ceiling) or STULZ outdoor cooling (air handler unit or modular container unit).

The focus of this design guide is the various methods of Water-Side Economizer Cooling, with an emphasis on Dynamic Economizer Cooling.

Elevating Return Temperatures on a DX System

When elevating the return air temperatures to a CRAC, both power consumption and SCOP are impacted. By adding a traditional economizer cooling coil to the CRAC, power consumption and SCOP are further impacted.

	30 to	n CRA		40% RH Re ore, MD	eturn A	\ir			
	CRA		Constant and DryCoc	Speed Pump ler	Tra	(ditional	n zer Cooling	Savings Compariso	
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hrs	% of Yr	Total kW Hrs	
Full Compressor Operation	53.0	8760	100%	463,930	55.7	5998	68%	333,789	Total kW Savings Pe
Free Cooling Assist					39.2	1249	14%	48,923	Year: 46,888
Free Cooling					22.7	1513	17%	34,330	Total Cos
Yearly Total Unit Power Consumption (kW Hrs)				463,930				417,042	Savings Pe Year:
SCOP				2.1				2.1	\$4,688
	30 ton CRAC: 80°F 30% RH Return Air Baltimore, MD CRAC with Constant Speed Pump CRAC with								Savings Compariso
Mode	kW	ar Hrs	nd DryCoo	Total kW Hrs	kW	Hrs	Economiz	zer Cooling Total kW Hrs	
Full Compressor Operation	53.2	8760	100%	466,120	55.9	5272	60%	294,652	Total kW Savings Pe
Free Cooling Assist		<u> </u>	<u> </u>	<u> </u>	39.3	1975	23%	77,598	Year: 59,540
Free Cooling					22.7	1513	17%	34,330	Total Cost
Yearly Total Unit Power Consumption (kW Hrs)				466,120				406,580	Savings Pe Year:
SCOP	1			2.3				2.3	\$5,954
Benefit of Increasing Return Air Temperature from 75°F 40% to 80°F 30%	Power Savings for CRAC with DryCooler -0.5% SCOP 9.5%				Power Savings for CRAC with Free Cooling 2.5% SCOP 9.5%				

Based on 0.10 \$/kWh

Conditions are ASHRAE TC 9.9 2011 recommended

 Using Fluid Water • Full compressor operation includes compressors, fan, and pump

CR

When elevating the return air temperatures to a CRAH coupled with an air cooled chiller, power consumption is impacted. With a CRAH that has two coils, one coil coupled with an air cooled chiller, and one coil coupled with an evaporative cooling tower, power consumption is further impacted.

30 ton CRAH: 75°F 40% RH Return Air, 45°F Entering Water Baltimore, MD										Savings
		CRAH Coupled to an Air Cooled Chiller CRAH with Dual Coils Coupled to an Air Cooled Chiller & Coupled to an Evaporative Cooling Tower							Comparison	
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hrs	% of Yr	Total kW Hrs		Total kW Savings Per
Air Cooled Chiller Operation	46.2	8760	100%	404,362	47.0	6638	76%	311,654		Year: 68,771
Evaporative Cooling Tower Operation				-	11.3	2122	24%	23,936		Total Cost Savings Per
Yearly Total Unit Power Consumption (kW Hrs)				404,362	-	-	-	335,590		Year: \$6,877
	•							•		

•••••

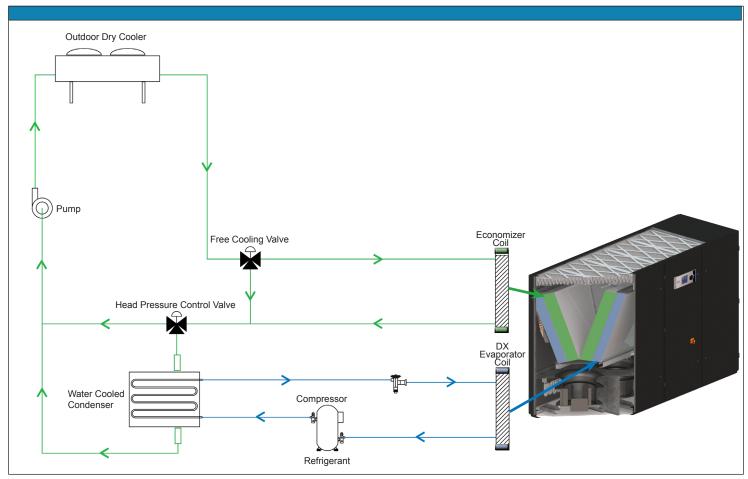
30 ton CRAH: 80°F 30% RH Return Air, 50°F Entering Water Baltimore, MD													
		CRAH Coupled to an Air Cooled Chiller					CRAH with Dual Coils Coupled to an Air Cooled Chiller & Coupled to an Evaporative Cooling Tower						
Mode	kW						Total kW Hrs		Total kW Savings Per				
Air Cooled Chiller Operation	43.1	8760	100%	377,556	46.3	6245	71%	289,144		Year: 62,609			
Evaporative Cooling Tower Operation		-		-	10.3	2515	29%	25,804		Total Cost Savings Per			
Yearly Total Unit Power Consumption (kW Hrs)				377,556	-	-	-	314,974		Year: \$6,261			
									• • •				
Benefit of Increasing Return Air Temperature from 75°F 40% to 80°F 30%	Power Savings for CRAH 7.1%				Power Savings for CRAH with Dual Coil 6.1%								
• Based on 0.10 \$/kWh	• • • • •	•••••	1.23 kW per to	on Air-Cooled Chiller	• • • • •	• • • • •							

 Conditions are ASHRAE TC 9.9 2011 recommended • Pump is 65% efficient

•••••

•

STULZ Water-Side Economizers based on a CRAC with a Free Cooling Coil


STULZ DX CRAC with Economizer Coil and Condenser Loop

A standard CRAC cooling unit with water-side economizer capability consists of a CRAC with a direct expansion (DX) coil and a chilled water / glycol coil.

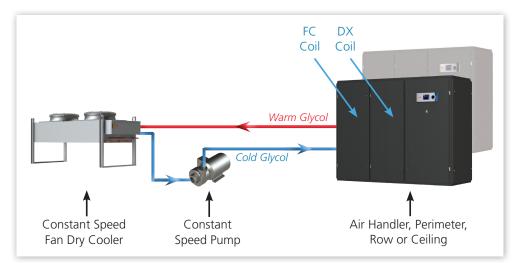
When the fluid temperature is warm, the unit operates as a fluid cooled DX unit, rejecting the heat into a heat rejection device (dry cooler or closed loop cooling tower).

When ambient temperature drops, the flow of the resulting lower temperature fluid is diverted into the chilled water / glycol coil, providing a cooling assist mode of operation.

When the required data center cooling capacity can be satisfied using only the cooling fluid, then the CRAC will turn off its compressors and only cool using the chilled water / glycol loop.

Used with the following STULZ Water-Side Economizers:

Traditional Economizer Cooling


- Variable Economizer Cooling
- Evaporative Tower Economizer Cooling

STULZ is currently using highly efficient scroll compressors with available tandem and stepped capacity in 2, 3, or 4 stages of operation, each with a hot-gas bypass option. Following is a table that illustrates how this highly effective means of DX cooling works:

Consoity	Tandem Co	Compressor	
Capacity	1a	1b	2
25%	Х		
50%			Х
75%		Х	Х
100%	Х	Х	Х

Traditional Economizer Cooling

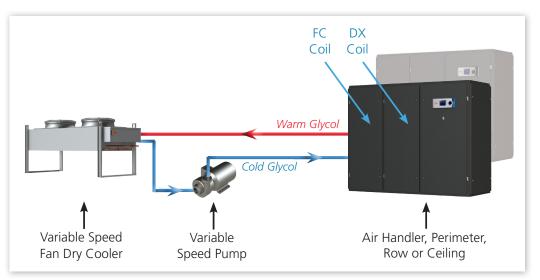
Traditional Economizer Cooling is comprised of a constant fan speed dry cooler (with fans being cycled on and off based on fluid temperature), constant speed pumps, and water/ glycol cooled free cooling CRACs (consisting of both a DX cooling coil and a water/glycol free cooling coil).

30 ton CRAC with FC Coil - 80°F 30% RH Return Air										
			В	altimore MD						
	CRA		Constant S d DryCoo	Speed Pump Ier			ee Cooling Cou ed Pump and	•	Total kW Savings Per	
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Year: 59,540	
Full Compressor Operation	53.2	8760	100%	466,120	55.9	5272	60%	294,652	59,540	
Free Cooling Assist				-	39.3	1975	23%	77,598	Total Cost Savings Per	
Free Cooling				-	22.7	1513	17%	34,330	Year:	
Yearly Total Unit Power Con	sumptio	n (kW H	rs)	466,120	-	-	-	406,580	\$5,954	
			Sal	t Lake City, UT	(calculate	d at 4,50	0 ft altitude)			
	CRA			nstant Speed PumpCRAC with Free Cooling Coupled withDryCoolerConstant Speed Pump and DryCooler					Total kW Savings Per	
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Year: 78,929	
Full Compressor Operation	54.6	8760	100%	478,603	57.3	4491	51%	257,402		
Free Cooling Assist				-	40.7	2369	27%	96,454	Total Cost	
Free Cooling				-	24.1	1900	22%	45,819	Savings Per Year:	
Yearly Total Unit Power Cons	sumptio	n (kW H	rs)	478,603	-	-	-	399,674	\$7,892	
			F	Portland, OR						
	CRA		Constant S d DryCoo	Speed Pump ler			ee Cooling Cou ed Pump and	•	Total kW Savings Per	
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Year:	
Full Compressor Operation	53.2	8760	100%	466,120	55.2	4953	57%	273,455	51,537	
Free Cooling Assist				-	39.3	3298	38%	129,578	Total Cost	
Free Cooling				-	22.7	509	6%	11,549	Savings Per Year:	
Yearly Total Unit Power Con	sumptio	n (kW H	rs)	466,120	-	-	-	414,583	\$5,153	

Based on 0.10 \$/kWhUsing a nominal Drycooler

Conditions are ASHRAE TC 9.9 2011 recommended

Full compressor operation includes compressors, fan, and pump
 Using Fluid Water


Using Pump Power for CRAC and Drycooler Pressure Drop

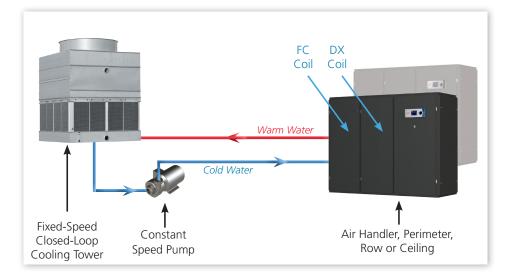
• Pump is 65% efficient

www.STULZ.com

Variable **Economizer Cooling**

Variable Economizer Cooling is comprised of a variable fan speed dry cooler (with fan speed controlled based on fluid temperature), variable speed pumps (controlled based on fluid temperature), and water/ glycol cooled free cooling CRACs (consisting of both a DX and a water/glycol free cooling coil).

31	0 ton	CRAC	with F	C Coil: 80°	F 30% R	H Reti	urn Air					
				Baltimore, MD)							
	CRA	CRAC with Constant Speed Pump and DryCooler			CRAC with		oling Couple mp and DryC	d with Variable Speed Cooler	Total kW Savings Per			
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Year: 142,644			
Full Compressor Operation	53.2	8760	100%	466,120	44.4	5557	63%	246,534				
Free Cooling Assist			<u> </u>	-	28.8	2080	24%	59,915	Total Cost			
Free Cooling	·	-	15.1	1123	13%	17,028	Savings Pe Year:					
Yearly Total Unit Power Con	sumptio	on (kW H	Hrs)	466,120	-	-	-	323,476	\$14,264			
				Salt Lake City, U	T (calcul	ated at 4	,500 ft altitu	de)				
	CRA		Constant S nd DryCoo	Speed Pump ler	CRAC with Free Cooling Coupled with Variable Speed Pump and DryCooler				Total kW Savings Per			
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Year: 156,345			
Full Compressor Operation	54.6	8760	100%	478,603	46.0	4777	55%	219,601	· · · · · ·			
Free Cooling Assist				-	30.5	2571	29%	78,437	Total Cost Savings Pe			
Free Cooling				-	17.1	1412	16%	24,219	Year:			
Yearly Total Unit Power Con	sumptio	on (kW H	Irs)	478,603	-	-	-	322,258	\$15,634			
				Portland, OR								
	CRA		Constant S nd DryCoo	Speed Pump ler	CRAC with	CRAC with Free Cooling Coupled with Variable Speed Pump and DryCooler						
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Savings Pe Year: 134,108			
Full Compressor Operation	53.2	8760	100%	466,120	44.2	5243	60%	232,018				
Free Cooling Assist				-	29.3	3239	37%	94,844	Total Cost			
Free Cooling				-	18.5	278	3%	5,150	Savings Pe Year:			
Yearly Total Unit Power Con	sumptio	on (kW H	Hrs)	466,120	-	-	-	332,012	\$13,410			
Based on 0.10 \$/kW/h Nominal 30 ton Drycooler Using Pump Power for CRAC and D	Prycooler P	Pressure D		 Conditions are ASI Full compressor op Using Fluid Water 		es compres		mp				


Pump is 65% efficient

kW average shown as actual kW varies over ambient range

www.STULZ.com

Evaporative Tower Economizer Cooling

Evaporative Tower Economizer Cooling is comprised of a closed loop evaporative cooling tower (controlled based on fluid temperature), a constant speed pump, and water/glycol cooled free cooling CRACs (consisting of both a DX and a water/glycol free cooling coil).

30 tor	ר CRA	\C wit	h FC C	oil: 80°F 30	% RH	Retur	n Air		
			Balti	imore, MD					
	CRA		Constant S nd DryCoo	Speed Pump Ier			ee cooling co losed loop c	oupled with ooling tower	Total k Savings
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Year
Full Compressor Operation	53.2	8760	100%	466,120	47.3	5028	57%	237,774	149,0
Free Cooling Assist			^	-	30.7	1610	18%	49,411	Total C
Free Cooling				-	14.1	2122	24%	29,899	Savings Year
Yearly Total Unit Power Cons	sumptio	on (kW H	Hrs)	466,120	-	-	-	317,084	\$14,9
			Salt L	ake City, UT	(calculat	ed at 4,5:	00 ft altitud	e)	
	CRA		Constant S nd DryCoo	Speed Pump Ier	CRAC with free cooling coupled with fixed-speed closed loop cooling tower			Total k	
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Savings Year
Full Compressor Operation	54.6	8760	100%	478,603	49.4	3810	43%	188,271	172,0
Free Cooling Assist			^	-	32.8	2293	26%	75,245	Total C
Free Cooling				-	16.2	2657	30%	43,083	Savings Year
Yearly Total Unit Power Cons	sumptio	on (kW F	Hrs)	478,603	-	-	-	306,599	\$17,2
			Por	tland, OR					
	CRA		Constant S nd DryCoo	Speed Pump ler			ee cooling c losed loop c	oupled with ooling tower	Total k Savings
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Year
Full Compressor Operation	53.2	8760	100%	466,120	47.3	6539	75%	309,229	109,7
Free Cooling Assist				-	30.7	956	11%	29,340	Total C
Free Cooling	-	14.1	1265	14%	17,824	Savings Year			
Yearly Total Unit Power Cons	sumptio	on (kW H	Hrs)	466,120	-	-	-	356,393	\$10,9

Based on 0.10 \$/kW/h

Nominal 30 ton Cooling Tower

Using Pump Power for CRAC and Water Tower Pressure Drop

Pump is 65% efficient

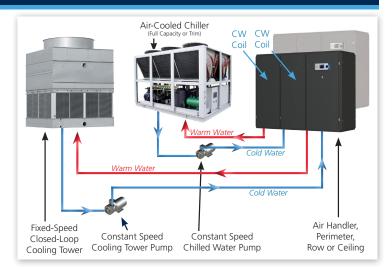
Using Fluid Water

 Conditions are ASHRAE TC 9.9 2011 recommended · Full compressor operation includes compressors, fan, and pump

	Compar	ison of DX Ec	onomizer (Cooling		
	30 ton CR	AC with FC Coil: 8	30°F 30% RH F	Return Air		
		CRAC with Constant Speed Pump & DryCooler	Traditional Economizer Cooling	Variable Economizer Cooling	Evaporative Tower Economizer Cooling	
Baltimore	System kW Per Yr	466,120	406,580	323,476	317,084	
MD	System Operational Cost Per Yr	\$46,612	\$40,658	\$32,348	\$31,708	
% Redu	ced Energy	-130				
kW Per Yr & Associat	ed Operational Cost Per Yr		-31%	32%	• • •	
Salt Lake City	System kW Per Yr	478,603	399,674	322,258	306,599	
UT	System Operational Cost Per Yr	\$47,860	\$39,967	\$32,225	\$30,660	
% Redu	ced Energy	-179	0 0 0 0 0			
kW Per Yr & Associat	ed Operational Cost Per Yr		-33%	36%		
Portland	System kW Per Yr	466,120	414,583	332,012	356,393	
OR	System Operational Cost Per Yr	\$46,612	\$41,458	\$33,201	\$35,639	
% Redu	ced Energy	-119	%	• • • • •	0 0 0 0 0	
	ed Operational Cost Per Yr		-29%	24%	0 0 0 0 0	

Conditions are ASHRAE TC 9.9 2011 recommended

Summary: A summary of the various DX-based economizer solutions show how the different solutions compare with one another and how effective each is in different weather conditions. A further analysis of the return on investment (ROI) for each is provided in Appendix A.


STULZ Water-Side Economizers based on a CRAH with Single or Dual Circuit

Dual-Source Chilled Water Economizer Cooling

Dual-Source Chilled Water Economizer Cooling is comprised of an evaporative cooling tower (controlled based on fluid temperature), cooling tower pumps, chiller (controlled based on fluid temperature), chiller pumps, and a CRAH unit (with dual circuited interlaced chilled water cooling coil).

The solution data is based on operating only one circuit at a time. STULZ is able to provide software to do multi-circuit operation.

0.00

30 to											
			Ba	timore, MD							
	CRAH	Couple	d with Air	-Cooled Chiller	Cooled Chiller CRAH with Dual Coils Coupled with Chiller and Evaporative Cooling				Total kW Savings Per		
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Year: 62,609		
Air Cooled Chiller Operation	43.1	8760	100%	377,556	46.3	6245	71%	289,144	Total Cost		
Evaporative Cooling Towe		-	10.3	2515	29%	25,804	Savings Per Year:				
Yearly Total Unit Power Co	onsump	tion (kv	V Hrs)	377,556	-	-	-	314,947	\$6,261		
Salt Lake City, UT (calculated at 4,500 ft altitude)											
	CRAH	Couple	d with Air	-Cooled Chiller	CRAH wi Chill	th Dual C er and Ev	Total kW Savings Per				
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Year: 86,302		
Air Cooled Chiller Operation	44.0	8760	100%	385,440	47.0	5624	64%	264,328	60,302 Total Cost		
Evaporative Cooling Towe	r Opera	ition		-	11.1	3136	36%	34,810	Savings Per Year:		
Yearly Total Unit Power Co	onsump	tion (kv	V Hrs)	385,440	-	-	-	299,138	\$8,630		
			Рс	ortland, OR		<u></u>					
	CRAH	Couple	d with Air	-Cooled Chiller				with Air-Cooled poling Tower	Total kW Savings Per		
Mode	kW	Hrs	% of Yr	Total kW Hrs	kW	Hours	% of Year	Total kW Hrs	Year:		
Air Cooled Chiller Operation	43.1	8760	100%	377,556	46.3	7357	84%	340,629	22,532 Total Cost		
Evaporative Cooling Towe	r Opera	ition		-	10.3	1403	16%	14,395	Savings Per Year:		
Yearly Total Unit Power Co	onsump	otion (kV	V Hrs)	377,556	-	-	-	355,024	\$2,253		

Pump is 65% efficient

Chiller power is assumed as 1.23kW per ton
 Nominal 30 ton Chiller

Nominal 30 ton Cooling Tower
Power cost is \$0.10 per kW-hr.
Conditions are ASHRAE TC 9.9 2011 recommended

Using Fluid Water

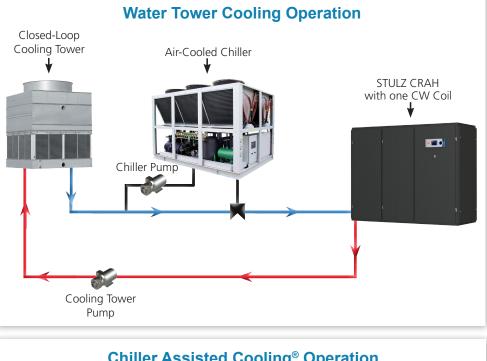
STULZ Air Technology Systems, Inc.

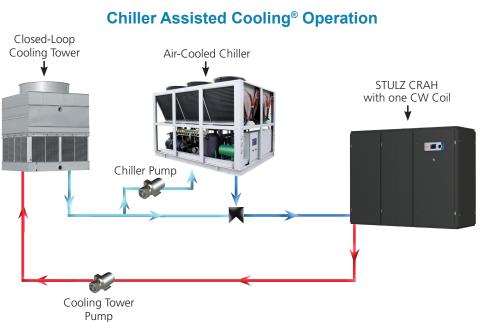
www.STULZ.com

STULZ Dynamic Economizer Cooling

STULZ Dynamic Economizer Cooling is the latest state-of-the-art water-side economizer solution, and is comprised of an evaporative cooling tower, cooling tower pumps, air- cooled chiller, chiller pumps, control mixing valves, and chilled water cooled CRAHs. A working model of the STULZ Dynamic Cooling water-side economizer has been installed in the STULZ Mission Energy Laboratory in Frederick, Maryland.

The design of the system was developed in cooperation with RTKL Associates Inc. (an Arcadis Company) located in


Baltimore, Maryland - a leading data center design firm (engineer) and inventor of Chiller Assisted Cooling® (a registered trademark - patent pending) and a leading multi-tenant / co-location data center provider for their new large data center in Northern Virginia.


Water Tower Cooling Mode and Chiller Assisted Cooling[®] Mode

When ambient conditions are near or below required cooling fluid temperature, the Chiller Assisted Cooling[®] system operates in the cooling tower mode, providing cooling without energizing the chiller.

If ambient temperature increases above the required cooling fluid temperature, flow from the tower is diverted to the chiller to provide the trim needed to maintain the cooling fluid temperature. This system is designed to minimize the hours of chiller operation and optimize opportunity for economization.

30 ton CRAH: 80°F 30% RH Return Air, 50°F Entering Water												
			В	altimore, MI	כ							
	CRAH	Coupled	with Air-C	ooled Chiller	STUI	Z Dynam	nic Economiz	er Cooling	••			
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Total kW Savings Per Year:			
Chiller	43.1	8760	100%	377,556	43.8	4107	47%	179,895	111,022			
Chiller Assist				-	24.5	2711	31%	66,364				
Wet Tower				-	11.1	1135	13%	12,575	Total Cost			
Dry Tower				-	9.5	807	9%	7700	Savings Per Year:			
Yearly Total Unit Pov	ver Consu	Imption (kW Hrs)	377,556	-	-	-	266,534	\$11,102			
Salt Lake City, UT (calculated at 4,500 ft altitude)												
	CRAH	Coupled	with Air-C	ooled Chiller		Z Dynam	Total kW					
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Savings Per Year:			
Chiller	44.0	8760	100%	385,440	44.7	3268	37%	146,077	133,833			
Chiller Assist				-	23.3	3527	40%	82,259				
Wet Tower				-	12.6	1038	12%	13,062	Total Cost			
Dry Tower				-	11.0	927	11%	10,209	Savings Per Year:			
Yearly Total Unit Pov	ver Consu	Imption (kW Hrs)	385,440	-	-	-	251,607	\$13,383			
				Portland, OR								
	CRAH	Coupled	with Air-C	ooled Chiller	STUL	Z Dynam	nic Economiz	er Cooling	_ /			
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Total kW Savings Per			
Chiller	43.1	8760	100%	377,556	43.7	3362	38%	146,952	Year: 110,916			
Chiller Assist	-	22.8	5098	58%	116,299							
Wet Tower		-	11.5	262	3%	3001	Total Cost					
Dry Tower		-	10.2	38	0.4%	388	Savings Per Year:					
Yearly Total Unit Pov	ver Consu	Imption (kW Hrs)	377,556	-	-	-	266,640	\$11,092			

Pump is 65% efficient

Nominal 30 ton Cooling Tower
Power cost is \$0.10 per kW-hr.

Chiller power is assumed as 1.23kW per ton
 Nominal 30 ton Chiller

Conditions are ASHRAE TC 9.9 2011 recommended

Using Fluid Water

• kW average shown as actual kW varies over ambient range

Summary:

The STULZ Dynamic Economizer Cooling Solution provides good energy efficiency at a return air temperature of 80°F and an entering water temperature of 50°F, but the system efficiency can be optimized significantly further by elevating the return air temperature and supply water temperature, as shown in the example on page 24.

[•] Power cost is \$0.

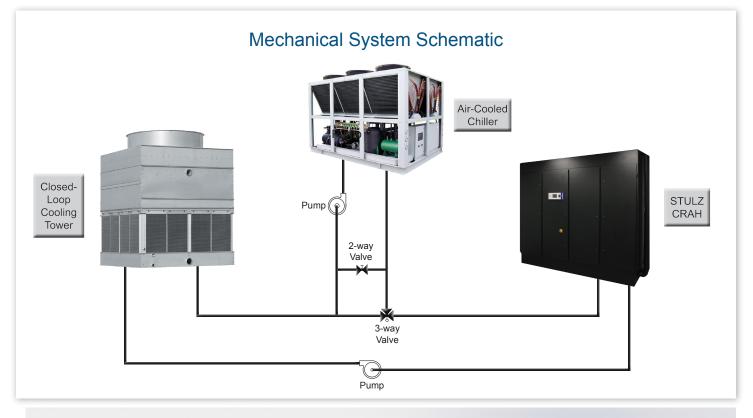
	Comparison o	f Chilled Wate	r Economizer Cooling							
30) ton CRAH: 80°F 30%	RH Return Air, 50°F	Entering Air / 60°F Leaving	Nater						
		CRAH Coupled with Air Cooled Chiller	CRAH with Dual Coils Coupled with an Air Cooled Chiller & Evaporative Cooling Tower	STULZ Dynamic Economizer Cooling						
Baltimore	System kW Per Yr	377,556	314,947	266,534						
MD	System Operational Cost Per Yr	\$37,757	\$31,495	\$26,653						
% Reduc	% Reduced Energy									
kW Per Yr & Associate	ed Operational Cost Per Yr		-29%	• • • • • • • • • •						
Salt Lake City	System kW Per Yr	385,440	299,138	251,607						
UT	System Operational Cost Per Yr	\$38,544	\$38,544 \$29,914							
	ced Energy	-22								
	ed Operational Cost Per Yr		-35%	•						
Portland	System kW Per Yr	377,556	355,024	266,640						
OR	System Operational Cost Per Yr	\$37,756	\$35,502	\$26,664						
% Reduc	ced Energy	-6	%	•						
kW Per Yr & Associate	ed Operational Cost Per Yr		-29%	• • • • • • • • • •						
Power Cost \$0.10 per	s 1/1/lbs									

Power Cost \$0.10 per kWhr

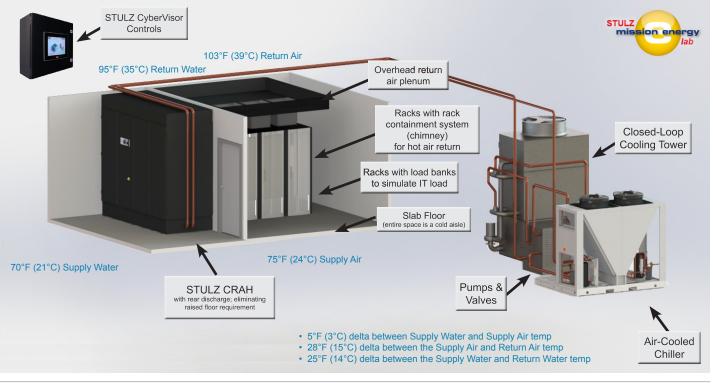
Indoor conditions are 80/30%

Conditions are ASHRAE TC 9.9 2011 recommended

Summary:


A summary of the various CW-based economizer solutions show how the different solutions compare with one another and how effective each is in different weather conditions. A further analysis of the return on investment (ROI) for each is provided in Appendix A. In the following pages, we focus in on how the STULZ Dynamic Economizer Cooling Solution can be optimized significantly further by elevating the return air temperature and supply water temperature.

STULZ Dynamic Economizer Cooling with CyberVisor Controls



The STULZ Dynamic Economizer Cooling System achieves incredible efficiency by executing a

carefully coordinated sequence of operations, where the functions of CRAH's, closed loop cooling towers, variable speed pump packages, modulating three-way valves, and supporting chillers are orchestrated by sophisticated STULZ CyberVisor controls. Raise the return air temperature to the CRAH (using containment) and providing a cooling coil that enables a large delta-T. The operating conditions can be modified to allow the use of 70°F supply water and 75°F supply air to the IT equipment (well within ASHRAE TC9.9 guidelines).

Test setup of Dynamic Economizer Cooling with optimized operating conditions

System Components

The STULZ Dynamic Economizer Cooling (Chiller Assisted Cooling[®]) is an infrastructure and control system that involves multiple heat rejection devices. Each device operates at varying loads depending on the ambient dry bulb and wet bulb conditions. The system consists of the following primary components:

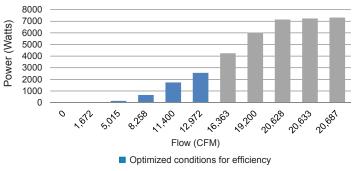
1. STULZ CRAH with Optimized Coil and Fan Speed Provides Highly Efficient "Warm Water" Cooling

STULZ perimeter CRAH cooling units are ideal for "warm water" cooling. STULZ has designed a chilled water coil with circuiting that enables a large water-side delta-T over the coil (rows, passes, tubes, and fins). The coil is designed for the highest SHR, while maintaining face velocities below 500 feet per minute. Lower fan speeds promote additional energy savings. This contributes to significant cooling tower and chiller efficiency and energy savings.

STULZ has also designed the CRAH to have the option of an integrated floor stand, making it possible to have front or rear discharge from the CRAH and utilize a slab floor. This makes it possible to eliminate the raised floor and make the entire room the cold aisle.

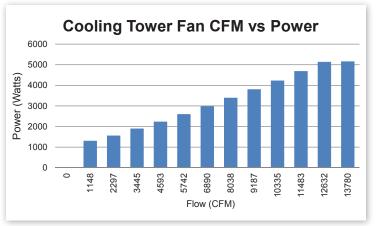
The geometry of the fan location in the CRAH has been taken into careful consideration so that the EC fans provide the same highly efficient pressure and flow of air that you are used to with a STULZ CRAH with bottom discharge and a raised floor.

Closed-Loop Cooling Tower All-Year Primary Economizer Cooling


Dry Tower Mode:

In dry tower mode the ambient dry bulb temperature is well below the required cooling fluid temperature. In this mode, the leaving fluid from the CRAH unit is pumped through the closed loop cooling tower and back into the CRAH unit. The chiller and the chiller pump are not in use. This is referred to as dry mode because the needed heat rejection can be achieved without the sump on the cooling tower being used, thus the cooling tower can operate even when the ambient is below freezing.

Wet Tower Mode:


As the ambient temperature increases, the closed-loop cooling tower transitions from a dry operation to a wet operation. The wet operation of the closed loop cooling tower allows the tower to reject cooling fluid heat at a higher ambient temperature. This is achieved by an adiabatic cooling effect of small water droplets being pumped from the sump and spayed over the coil surface. The ability to reject the heat at a higher ambient temperature extends the amount of time you can operate without running the chiller and chiller pump, thus saving on compressorized cooling.

CRAH Fan Airflow vs Power

Graph based on 1 unit; scalable to multiple units

Graph based on 1 unit: multiple units would have additional efficiency benefits

Air-Cooled Chiller used for "Chiller Assisted Cooling®"

Sized to act as an assist device to provide additional (trim) capacity when the ambient conditions are unfavorable to run solely on cooling tower operation, or to maintain white space load should cooling tower fail.

> 3500 3000

2500

2000

1500

1000

500

Power (Watts)

Chiller Assist Mode:

Pumps and Valves

provide flow to the chiller.

one device or the other.

Reduced Flow and High Delta-T

· Two variable speed pumps are used, one to

provide flow to the cooling tower, and one to

· A three-way mixing valve is used to mix water

from the cooling tower and chiller, or to bypass

The Chiller Assist Mode is used when the ambient or internal load has increased to a point that the cooling tower can no longer maintain the required water temperature. The 3-way valves change positions from bypassing the chiller to allowing a small amount of flow to go through the chiller. The chiller pump turns on and runs at a minimum initial speed. The Chiller powers up and the compressor begins, fully unloaded, and then slowly loads up to maintain the required leaving water temperature.

As the water temperature increases, the flow being diverted to the chiller by the chiller three-way valve increases, as does the speed of the chiller pump. When the flow increases to the chiller, the compressors continue to increase loading to maintain the fluid temperature. This increase continues until fluid temperature is at set point or the chillers compressor is fully loaded.

Compressorized operation uses significantly more power than just pumping a fluid or moving air with a fan. As such the cooling tower operation is always more efficient to operate than the compressors on the chiller.

The reason the chillers must be present is because when the ambient WB approaches the fluid temperature, the efficiency and heat rejection capacity of the water tower decreases, thus making it impossible to maintain the data center white space temperature without some form of direct expansion cooling.

> 6300 7350

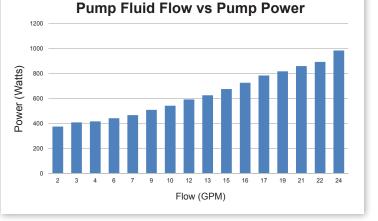
5250

^{‡200}

3150

2100

9450 10500 11550 12600 13650 14700 15750 6800 7850


Flow (CFM)

8400

Graph based on 1 unit; scalable to multiple units

Graph based on 1 unit: multiple units would have additional efficiency benefits

STULZ CyberVisor Controller

ALL CONOMICIPACION OF CONOMICIPACIÓN OF CONOMICON OF CONO OF CONOMICONO

Controls are the key element of this chiller assist cooling system and provide the link between the individual components. In order to ensure redundancy and

fail-safe operation, the control structure is based on a supervisory approach with a "top-down" configuration. The supervisor has its own hardware platform and is linked to the individual component controllers via a communication protocol. In the event of a loss of communication, all component controllers switch to a fail-safe mode and continue local operation at a predefined component-specific set point. All local set-points are aligned with each other to allow uninterrupted operation. Only the system operation optimization is interrupted until operation of the supervisory controller can be restored.

Functionality of CyberVisor with Controller Screen Shots:

STULZ Enclosed Server Racks	R
CyberVisor Rack 1 Inlet Average Temperature 75,4*F Rack 1 Outlet Average Temperature 104.6*F Rack 2 Inlet Average Temperature 75,4*F Rack 2 Outlet Average Temperature 104.6*F	1.
Rack 3 Inlet Average Temperature 75,4*F Rack 3 Outlet Average Temperature 104,6*F	2.
	3.
STULZ	0
CyberVisor	1.
Mostly Cloudy 51°F 11°C Wet Blub 45°F (7°C) Humidity 63% Wind Speed NW 16 G 25 mph Barometer 29.98 in Dewpoint 38°F (3°C) Withikite In On ord	2.
Visibility 10.00 mi Wind Chill 45°F (7°C)	3.
• 16:01:54	

Racks (with load banks to simulate IT equipment)

- Inlet Temperature: measures temperature into the rack, to determine if there is air leakage or additional ambient heat in the room
- Rack Temperature: provides a profile of the cooling effect in the rack and how the temperature changes as the air moves through the rack
- Power Monitoring: measures power consumption of the racks IT equipment to determine what internal heat load is being generated

Outdoor Sensors

- Ambient Temperature: measures the ambient DB (dry bulb) temperature to understand the effect on the outdoor equipment's mode of operation
- 2. Ambient Humidity: measures the WB (wet bulb) and the potential for using the wet mode of operation on the cooling tower
- . Barometric Pressure: determines the air density

Cybervisor	Deration Mode: Dry Tower Mode Jnit Power Consumption: 1,0 kw Return Air Temperature 104,3 'F Return Air Humidhy 2,76 % Supply Air Temperature 75,1 'F
Temperature Setpoint	75.0 °F
Chilled Water Valve Position	0.0 %
Fan Speed	40.0 %
Unit Static Pressure	0.10 inwc
Chill Water SupplyTemperature	69.9 °F
Chill Water Return Temperature	95.1°F
Water Flow Rate	29.0 GPM
Unit Air Flow 11	092.0 CFM

STULZ CRAH

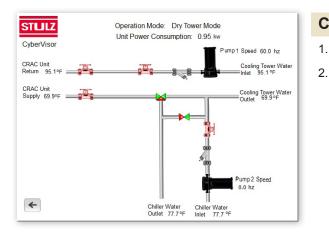
3.

4.

5.

- 1. Return Temperature Sensor: measures the return air temperature from the racks to ensure we are maintaining set point
- 2. Supply Temperature Sensor: measure the delta-T across the coil and is used to determine what temperature we are supplying to the racks
 - Fan Speed: used to determine CFM giving us the capacity of the unit when used in conjunction with the return sensor and supply sensor
 - Fluid Flow Meter: used to verify the flow rate, to see the effects on efficiency, and to increase the flow prior to increasing the fan speed on the cooling tower.
 - Power Monitoring: measures power consumption of the unit to help determine efficiency in different operating modes.

Cooling Tower Pump


- VFD Percentage: determines the speed of the pumps
- 2. Power Monitoring: measures power consumption of the pump to determine efficiency in different operating modes

Cooling Tower

1.

3.

- 1. Inlet Fluid Temperature: measures fluid temperature returning from the CRAH
- 2. Outlet Fluid Temperature: determines the delta-T across the tower at varying ambient conditions
 - Fan Speed: determines fan speed and the fan speed effect on tower operation at varying ambient conditions
- 4. Sump On/Off: monitors and determines the optimal effect of operating the tower as a wet tower
- 5. Power Monitoring: measures power consumption of the cooling tower to help determine efficiency in different operating modes

Chiller Pump and Valves

- VFD Percentage: determines the speed of the pumps
- Power Monitoring: measures power consumption of the pump to help determine efficiency in different operating modes

STULZ CyberVisor Chiller Water Temp Entering 77.7 °F Chiller Water Temp Leaving 77.7 °F Water Temperature Setpoint 70.0 °F 163.9 PSI Compressor 1 Suction Pressure Compressor 1 Discharge Pressure 163.9 PSI 0.0 °F Compressor 1 Superheat Compressor 1 Hot Gas Valve Output 0.0 Condenser Fan 1 Output 0.0 Compressor 2 Suction Pressure

Compressor 2 Discharge Pressure

Compressor 2 Hot Gas Valve Output Condenser Fan 2 Output

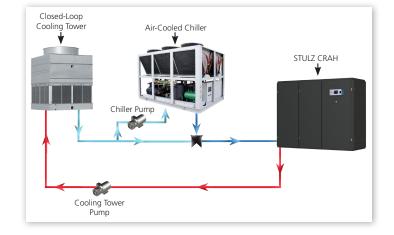
0.0

0.0

Compressor 2 Superheat

+

Air Cooled Chiller (30 Tons) Operation Mode: Dry Tower Mode Power Consumption: 0.0 kw Cooling Capacity Output



Chiller (Assist)

- 1. Inlet Fluid Temperature: measures fluid temperature returning from the Cooling Tower or the CRAH unit, depending on the mode of operation
- 2. Outlet Fluid Temperature: determines the delta-T across the chiller at varying stages of loading

STULZ Dynamic Economizer Cooling

With the STULZ Dynamic Economizer Cooling system operating under optimized conditions, it becomes clear that the system provide state-of-theart efficiency and contribute to some of the lowest PUE numbers found in the industry. A further discussion of ROI and PUE can be found in Appendix A.

30 ton CRAH: 103°F 14% RH Return Air, 70°F Entering Water /95°F Leaving Water

			B	altimore, MI	D				
	CRAH	Coupled	d with Air	Cooled Chiller	STUL	Z Dynami	c Economize	er Cooling	T
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Total kW Savings Per
Chiller	43.1	8760	100%	377,556	42.2	5	0.1%	211	Year: 282,934
Chiller Assist				-	21.6	2330	27%	50,253	
Wet Tower				-	8.6	982	11%	8,458	Total Cost Savings Per
Dry Tower		-	6.6	5443	62%	35,700	Year:		
Yearly Total Unit Power	Consun	nption (kW Hrs)	377,556	-	-	-	94,622	\$28,293
			Sa	lt Lake City, l	JT (calcu	lated at 4	,500 ft altitu	de)	
	CRAH	Coupled	d with Air	Cooled Chiller	STUL	.Z Dynami	c Economize	er Cooling	
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Total kW Savings Per
Chiller	44.0	8760	100%	385,440	0	0	0%	0	Year: 293,336
Chiller Assist				-	25.3	1379	15%	34,870	
Wet Tower				-	9.6	1807	21%	17,350	Total Cost Savings Per
Dry Tower				-	7.1	5574	64%	39,884	Year:
Yearly Total Unit Power	Consun	nption (kW Hrs)	385,440	-	-	-	92,104	\$29,334
				Portland, OR					
	CRAH	Coupled	d with Air	Cooled Chiller	STUL	.Z Dynami	c Economize	er Cooling	
Mode	kW	Hrs	% of Yr	Total kW Hrs	Average kW	Hours	% of Year	Total kW Hrs	Total kW Savings Per
Chiller	43.1	8760	100%	377,556	0	0	0%	0	Year: 306,864
Chiller Assist				-	19.7	692	8%	13,689	
Wet Tower				-	8.6	1261	14%	10,871	Total Cost Savings Per
Dry Tower				-	6.8	6807	78%	46,130	Year:
Yearly Total Unit Power	Consun	nption (kW Hrs)	377,556	-	_	-	70,692	\$30,686

• Chiller power is assumed as 1.23kW per ton

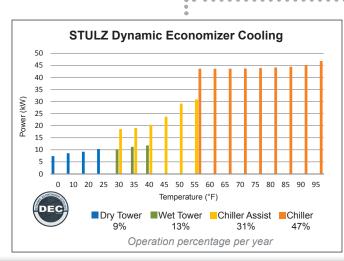
Nominal 30 ton Chiller

• Power cost is \$0.10 per kW-hr.

Conditions are ASHRAE TC 9.9 2011 recommended

Using Fluid Water
kW average shown as actual kW varies over ambient range

www.STULZ.com



	Comparison of Economizer Cooling													
			CRAC DX	(CRAH CW									
		80°F	30% RH Re	turn Air		RH Return Air, 50°F er /60°F Leaving Water	103°F 14% RH Return Air, 70°F Entering/95°F Leaving							
		Traditional	Variable	Evaporative Tower	Dual-Source	STULZ Dynamic Economizer Cooling	STULZ Dynamic Economizer Cooling							
Baltimore	kW Per Yr	406,580	323,476	317,084	314,947	266,534	94,622							
MD	Operational Cost Per Yr	\$40,658	\$32,348	\$31,708	\$31,495	\$26,653	\$9,462							
Salt Lake City	kW Per Yr	399,674	322,258	306,599	299,138	251,607	92,104							
UT	Operational Cost Per Yr	\$39,967	\$32,226	\$30,660	\$29,914	\$25,161	\$9,210							
Portland	kW Per Yr	414,583	332,012	356,393	355,024	266,640	70,692							
OR	Operational Cost Per Yr	\$41,458	\$33,201	\$35,639	\$35,502	\$26,664	\$7,069							

· Conditions are ASHRAE TC 9.9 2011 recommended

• Power cost is \$0.10 per kW-hr.

Accumulation of Curves:

STULZ Dynamic Economizer Cooling - OPTIMIZED 50 40 35 30 (kW) 25 Power 20 15 10 5 n 10 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Temperature (°F) Dry Tower Wet Tower Chiller Assist 62% 11% 27% Operation percentage per year

Summary: When comparing all the featured water-side economizer solutions, we see that each provides a benefit for each of the weather conditions selected. Selecting the optimal solution for your application depends on several factors, including: availability and cost of power, availability and cost of water, ability to maximize operating conditions, capital and/or operating budget, capability to support and service different equipment, etc. The charts illustrate just how much more efficiency can be achieved by operating the STULZ Dynamic Economizer Cooling system at optimized conditions.

Energy Measurement (PUE)

Power Usage Effectiveness or PUE was developed and recently clarified by Green Grid. PUE is a measurement for how efficiently a data center uses energy. It looks at how much energy is used by the computing equipment in contrast to cooling and power infrastructure and other overhead. In other words, PUE is a measure of the data center's effective use of power. It is the ratio of total amount of energy used by a computer data center facility to the energy delivered to computing equipment. PUE is dynamic and changes with outdoor temperature and humidity. Low PUE is the goal. The power used by mechanical cooling has represented a substantial portion of the overall data center power, however with the STULZ Dynamic Economizer Cooling System, PUE can be reduced significantly when deployed using optimized conditions.

PUE = Total Facility Energy / IT Equipment Energy. Greater than 2.0 is currently common. 1.6 is considered good. 1.2 or under is considered excellent.

STULZ economizer solutions help our customers achieve the lowest PUE's, and with the latest state-of-the-art economizer designs, customers can achieve PUE 's less than 1.2.

Return on Investment

Each of the water-side economizers detailed in this paper provide significant energy savings, but it is also necessary to look carefully at an overall return on investment (ROI) to determine which is right for you. Following is a table to help illustrate the potential ROI with each system based on weather conditions in Baltimore, MD:

Con	parison - 1 MW	/ System - Bal	timore, MD		CRAC	DX FC		CRAH CW				
	irn on Investme t Year Savings (yback)	CRAC with Glycol Cooled Condenser 80F / 30RH	Traditional 80F / 30RH	Variable 80F / 30RH	Evaporative Tower 80F / 30RH	CRAH with Air Cooled Chiller 80F / 30RH	Dual- Source 80F / 30RH	STULZ Dynamic Economizer 80F / 30RH	STULZ Dynamic Economizer 103F / 14RH	
		CapEx Total		\$ 358,300	\$ 425,270	\$ 544,471	\$ 432,840	\$ 621,680	\$ 774,200	\$ 757,780	\$733,180	
		OpEx Annual		\$ 438,153	\$ 382,185	\$ 304,071	\$ 298,055	\$ 354,897	\$ 296,053	\$ 250,538	\$88,943	
	CRAC with	CapEx Total	\$ 358,300		\$ 66,970	\$ 186,171	\$ 74,540	\$ 263,380	\$ 415,900	\$ 399,480	\$374,880	
	Glycol Cooled Condenser	OpEx Annual	\$ 438,153		-\$ 55,968	-\$ 134,082	-\$ 140,098	-\$ 83,256	-\$ 142,100	-\$ 187,615	-\$ 349,210	
	80F / 30RH	ROI			1.20	1.39	0.53	3.16	2.93	2.13	1.07	
БĊ		CapEx Total	\$ 425,270			\$ 119,201	\$ 7,570	\$ 196,410	\$ 348,930	\$ 332,510	\$ 307,910	
DX	Traditional 80F / 30RH	OpEx Annual	\$ 382,185			-\$ 78,114	-\$ 84,130	-\$ 27,288	-\$ 86,132	-\$ 131,647	-\$ 293,242	
CRAC [00F / 30KH	ROI				1.53	0.09	7.20	4.05	2.53	1.05	
RA		CapEx Total	\$ 544,471				-\$ 111,631	\$ 77,209	\$ 229,729	\$ 213,309	\$ 188,709	
0	Variable	OpEx Annual	\$ 304,071				-\$ 6,016	\$ 50,826	-\$ 8,018	-\$ 53,533	-\$ 215,128	
	80F / 30RH	ROI					\$ 117,647	- \$ 128,035	28.65	3.98	0.88	
	Evaporative	CapEx Total	\$ 432,840					\$ 188,840	\$ 341,360	\$ 324,940	\$ 300,340	
	Tower	OpEx Annual	\$ 298,055					\$ 56,842	-\$ 2,002	-\$ 47,517	-\$ 209,112	
	80F / 30RH	ROI						-\$ 245,682	-\$ 339,358	6.84	1.44	
	CRAH with Air	CapEx Total	\$ 621,680						\$ 152,520	\$ 136,100	\$ 111,500	
	Cooled Chiller	OpEx Annual	\$ 354,897						-\$ 58,844	-\$ 104,359	-\$ 265,954	
	80F / 30RH	ROI							2.59	1.30	0.42	
		CapEx Total	\$ 774,200							-\$ 16,420	-\$ 41,020	
>	Dual-Source	OpEx Annual	\$ 296,053							-\$ 45,515	-\$ 207,110	
H CW	80F / 30RH	ROI								\$ 61,935	\$ 248,130	
CRAH		CapEx Total	\$ 757,780								-\$ 24,600	
Ч	STULZ Dynamic Economizer	OpEx Annual	\$ 250,538								-\$ 161,595	
	80F / 30RH	ROI									\$ 186,195	
	STULZ Dynamic	CapEx Total	\$ 733,180									
	Economizer	OpEx Annual	\$ 88,943									
	103F / 14RH	ROI										

• System pricing includes major mechanical cooling system components only.

Does not include piping, electrical support systems, freight, or installation costs.

Additional Capital Savings (Cap-Ex)

Using the STULZ Dynamic Economizer Cooling System, there were some very significant capital savings achieved at a major co-location data center in Northern, VA.

- The raised floor was eliminated by utilizing STULZ CRAH's with front discharge and racks with integrated hot air containment. The entire data center white space was used as a cold aisle.
- The chiller CapEx requirements and related maintenance was reduced, by specifying/sizing only for the minimum trim capacity required.
- The generator CapEx requirements and related maintenance was reduced, by specifying/sizing for the much lower energy required by the system.

Energy Rebates

STULZ water-side economizer solutions often qualify data center owners for significant energy rebates. Many utility companies are reaching high levels of capacity. They are offering incentives to companies that implement ways to save energy. With this guide, customers can demonstrate the tremendous energy savings that can be achieved. STULZ customers have received hundreds of thousands of \$'s in rebates each year.

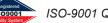
System Deployment

The first STULZ Dynamic Economizer Cooling System has been designed and implemented at a major co-location data center in Northern, VA with outstanding results!

Author Bio:

Jason Derrick is a licensed professional engineer who has worked in multiple engineering disciplines. Jason has been employed as an applications engineer at Stulz Air Technology Systems since February of 2007. He is an expert in all aspects of precision air conditioning and data center cooling with a specialty concentration in ultrasonic humidification and water side economization. Prior to joining the Stulz team Jason worked as a consulting engineer in the petrochemical industry. Jason holds a Bachelors of Science degree in Mechanical Engineering from West Virginia University.

Author Bio:


David Joy has over 15 years' experience supporting data center infrastructure. David currently works as VP of Sales and Marketing for Stulz, a global manufacturer of precision cooling products and solutions for data center applications. David's background includes 17 years in domestic and international sales and marketing roles at Rittal, a manufacturer of racks and cooling for industrial and IT applications, 5 years as VP of Product Marketing at Emerson Network Power-Liebert, a manufacturer of rack, power, and cooling products for data centers, and 2 years as VP/GM of Chiller Business at Daikin-McQuay, a manufacturer of comfort cooling products for commercial buildings. David holds a Master's Degree in Business Administration. He currently resides in Frederick, Maryland.

1572 Tilco Drive, Frederick, Maryland 21704 Phone: 301.620.2033, Fax: 301.662.5487 E-mail: info@stulz-ats.com

www.STULZ.com

QC-DEC0081 REV-C © January 2014 Technical data subject to change without notice.

ISO-9001 Quality Registered

Designed & Made in the USA